Article 9213

Title of the article

ANALYSIS OF FORMATION AND ORDERING MODELS OF ALUMINUM OXIDE’S POROUS STRUCTURE 

Authors

Averin Igor' Aleksandrovich, Doctor of engineering sciences, professor, head of sub-department of nano and microelectronics, Penza State University (Penza, 40 Krasnaya str.), micro@pnzgu.ru
Gubich Ivan Alekseevich, Postgraduate student, Penza State University (Penza, 40 Krasnaya str.), micro@pnzgu.ru 

Index UDK

621.315.611 

Abstract

Action concept of devices in microelectronics is generally based on surface effects, and that stipulates in the process of their production the intensive use of materials with developed surface, such as porous aluminum oxide. However up to date there is still no universal theory explaining the development under various formation
conditions of ordered oxide structure on aluminum, that determines the output parameters of nanoelectronic devices. The authors analyzed the main formation models of the hexagonally ordered structure of aluminum oxide: physicgeometrical; colloid-electrochemical; plasma and the model of mechanical stress. The researchers also studied functional dependencies of the influence of formation conditions by anodization on the parameters of porous aluminum oxide morphostructure, including the diameters of pores and oxide cells. This allows to select the formation model of the ordered aluminum oxide structure regarding the modes of formation and physical and chemical basics of cavitation for anodization. 

Key words

porous aluminum oxide, formation models, nanomaterials, ordering, pore, oxide film, modes of formation, electrolyte. 

Download PDF
References

1. Nanotekhnologii v Elektronike, pod red. Yu. A. Chaplygin [Nanotechnologies in electronics: edited by Yu.A. Chaplygin]. Moscow: Tekhnosfera, 2005, 450 p.
2. Aver'yanov E. E. Spravochnik po anodirovaniyu [Anodization manual]. Moscow: Mashinostroenie, 1988,224p.
3. Jessensky, O., Müller F., Gösele U. Applied Physics Letters. 1998, vol. 72, pp. 1173–1175.
4. Hideki Masuda, Kenji Kanezawa, Kazuyuki Nishio Chem. Lett. 2002, pp. 1218–1219.
5. Averin I. A., Gubich I. A., Pecherskaya R. M. Nano i mikrosistemnaya tekhnika [Nano and microsystem technology]. 2012, no. 6, pp. 11–14.
6. Averin I. A., Gubich I. A. Nadezhnost' i kachestvo: sb. tr. Mezhdunar. simpoziuma [Reliability and quality: proceedings of the International symposium]. Penza, 2012, vol. 2, pp. 183–184.
7. Moshnikov V. A., Sokolova E. N., Spivak Yu. M. Izv. SpBGETU «LETI» [Saint-Petersburg State Electrotechnical University “Leti”]. 2011, no. 2, pp. 13–19.
8. Aleksandrova O. A. Diagnostika materialov metodami skaniruyushchey zondovoy mikroskopii: ucheb. posobie [Material diagnostics by scanning probe microscopy]. Saint Petersburg: Izd-vo SPbGETU «LETI», 2012, 172 p.
9. Li A. P., Muller F., Birner A., Nielsch K. et al. Journal of Applied Physics. 1998, vol. 84, pp. 6023–6026.
10. Vrublevsky I., Parkoun V., Schreckenbach J. Appl. Surface Science. 2005, vol. 242, pp. 333–338.
11. Patermarakis G., Moussoutzanis K. Corrosion Science. 2002, vol. 44, pp. 1737–1753.
12. Myung N. V., Lim J., Fleurial J-P., Yun M. et al. Nanotechnology [Nanotechnology]. 2004, vol. 15, pp. 833–838.
13. Nielsch K., Choi J., Schwirn K. et al. Nano Letters. 2002, vol. 2 (7), pp. 677–680.

 

Дата создания: 28.08.2014 10:32
Дата обновления: 28.08.2014 11:26